1100-35-48 Alexander I. Nazarov* (al.il.nazarov@gmail.com). On the existence of extremal function in the Maz'ya-Sobolev inequality.

Denote by x = (y; z) a point in $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$, $n \ge 3, 2 \le m \le n-1$. By P we denote the subspace $\{x \in \mathbb{R}^n : y = 0\}$. Let G be a domain in \mathbb{R}^n . We denote by $\dot{W}_p^1(G)$ the closure of $C_0^{\infty}(G)$ w.r.t. the norm $\|\nabla v\|_{p,G}$.

For $0 \le s \le \min\{1, \frac{n}{p}\}$ we put $p_s^* = \frac{np}{n-sp}$. We discuss the sharp constant in the Maz'ya–Sobolev inequality

$$|||y|^{s-1}v||_{p_s^*,G} \le N ||\nabla v||_{p,G}.$$

Note that the case p < n, s = 1 gives usual Sobolev inequality. For m = 1 our problem degenerates in a sence. For m = n see the survey [1].

For p < n and 0 < s < 1 the sharp constant easily is not attained for any G provided $G \cap P \neq \emptyset$.

We consider more complicated case $G \cap P = \emptyset$, $\partial G \cap P \neq \emptyset$. First, we deal with G being a wedge $\mathcal{K} = K \times \mathbb{R}^{n-m}$ (K is an open cone in \mathbb{R}^m) or a perturbed wedge for all $1 and <math>0 \le s < \min\{1, \frac{n}{p}\}$. Then we consider the case of a bounded domain for p = 2 and 0 < s < 1.

Author is supported by RFBR grant 14-01-00534 and by SPbGU grant 6.38.670.2013.

REFERENCES

[1] A.I. Nazarov, J. Global Optim. **40** (2008), 289-303.

[2] A.I. Nazarov, Calc. Var. and PDEs. DOI 10.1007/s00526-012-0586-0, 21p. (Received January 24, 2014)