1100-16-218

Frauke M. Bleher*, Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, and **Ted Chinburg**, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395. *Linear operators and orbit closures*. Preliminary report.

This talk is about joint work with Ted Chinburg. We study the Grassmannian \mathcal{G} of submodules C of a given dimension inside a finitely generated projective module P for a finite dimensional algebra Λ over an algebraically closed field k. The closure \mathcal{X} in \mathcal{G} of the orbit of such a submodule C under the action of $\operatorname{Aut}_{\Lambda}(P)$ has been considered by a number of authors. We concentrate on the case when P is indecomposable. In this case \mathcal{X} is a rational variety, and there is an affine n-space \mathbb{A}^n in \mathcal{X} with the following property. The embedding of \mathbb{A}^n into \mathcal{G} is given by taking the space spanned by the rows of a matrix of linear polynomials in the n standard coordinates for \mathbb{A}^n . For n = 2, we show that the generic embedding of \mathbb{A}^2 into \mathcal{G} via such a matrix has closure isomorphic to \mathbb{P}^2 . We also show that there is a positive dimensional family of embeddings for which the closure is the Hirzebruch surface X_2 , respectively X_3 . While it is known by work of the authors and Birge Huisgen-Zimmermann that X_2 arises from an orbit closure \mathcal{X} as above, this is not known for the surface X_3 . (Received February 08, 2014)