1100-15-297 Harm Derksen* (hderksen@umich.edu). Tensor Decompositions.
A d-way array can be viewed as a tensor product: $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{d}$. For a given tensor $v \in V$, the PARAFAC/CANDECOMP problem asks to find a decomposition $v=v_{1}+v_{2}+\cdots+v_{r}$ where $v_{1}, v_{2}, \ldots, v_{r}$ are pure tensors and r is minimal. The number r is called the rank of the tensor v. The PARAFAC/CANDECOMP problem has many applications, for example in psychometrics, chemometrics, signal processing and algebraic complexity theory. I will discuss uniqueness, numerical stability and applications. Instead of minimizing r one may also minimize $\left\|v_{1}\right\|+\left\|v_{2}\right\|+\cdots+\left\|v_{r}\right\|$. This minimal value is the nuclear norm of the tensor v. For $d=2$ such a decomposition is a Singular Value Decomposition. Things get more complicated for $d \geq 3$. I will discuss ways for generalizing the Singular Value Decomposition for $d \geq 3$, at least for some tensors. (Received February 10, 2014)

