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The set
{

1, 25, 49
}

is a 3-term collection of integers which forms an arithmetic progression; the common difference is 24.

Hence the set
{

(1, 1), (5, 25), (7, 49)
}

is a 3-term collection of rational points on the parabola y = x2 whose y-coordinates

form an arithmetic progression. Similarly, the set
{

6, 12, 18
}

is a 3-term collection of integers which also forms an

arithmetic progression; the common difference is 6. Hence the set
{

(6, 3), (12, 39), (18, 75)
}

is a 3-term collection of

rational points on the elliptic curve y2 = x3 − 207 whose x-coordinates form an arithmetic progression. Are there other

examples such as these? What is the longest progression of rational points on either a quadratic or cubic curve such

that either the x- or y-coordinates form an arithmetic progression? In this talk, we give a survey on what’s known about

arithmetic progressions on algebraic curves. We introduce elliptic curves as a means to show the non-existence of certain

arithmetic progressions. We also introduce bielliptic curves in order to settle conjectures of Saraju P. Mohanty. This

project is joint work with Alejandra Alvarado. (Received February 01, 2014)
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