1100-11-304 Yasuyuki Kachi* (kachi@math.ku.edu), Snow Hall 405, 1460 Jayhawk Boulevard, Lawrence, KS 66045-7523, and Pavlos Tzermias (tzermias@neptune.math.upatras.gr), 26500 Rion, Patras.
Generalization of Bernoulli polynomials and analytic continuation of Riemann-Hurwitz zeta function. Preliminary report.
We all know that $f_{n}(k)=1^{n}+2^{n}+3^{n}+\cdots+k^{n} ; n=1,2, .$. are polynomials in k. In part because $f_{n}(k)=\zeta(1,-n)-\zeta(k+$ $1,-n)$ where $\zeta(s, x):=\sum_{j=0}^{\infty}(s+j)^{-x}$ is Riemann-Hurwitz zeta function, $f_{n}(s)$, or $B_{n}(s):=(\partial / \partial s) f_{n}(s-1)$ (Bernoulli polynomials), had been under intense scrutiny. Dozen generalizations were crafted. Among all, Akiyama-Tanigawa's Pascal-like triangle (ATT) is striking. While $B_{n}(s)$ reflect much of the trait of $\zeta(s, x)$, they alone do not have a capacity to recover $\zeta(s, x)$. We (1) define a double-sequence $\left\{m_{i, j}(t, s)\right\}$ of polynomials using $\operatorname{Ler}(z, s, x):=\sum_{j=0}^{\infty} z^{j}(s+j)^{-x}$. (2) For each $n=1,2, \ldots$ write $\zeta(s, x)$ as a series involving $m_{i, j}(t, s)$ over $\{x$; Re $x>-n\}$. This differs from the classical Euler sum and a recent work by Rubinstein. (3) $\left\{\left.\left(\partial^{2} / \partial t \partial s\right) m_{i, j}(t, s)\right|_{s=t=1}\right\}$ is ATT. Thus $\zeta(1, x)$ is written as a sum involving numbers in ATT. (4) Analyze automorphisms on the algebraic curves $C_{i, j}:=\left\{m_{i, j}(t, s)=0\right\}$ in conjunction with the functional identity for $\operatorname{Ler}(z, s, x)$ by Apostol and Berndt. (Received February 10, 2014)

