1093-13-223 Thanh Quang Vu* (vqthanh@math.berkeley.edu). Periodicity of Betti numbers of monomial curves.

Let K be an arbitrary field. Let $\mathbf{a} = (a_1 < ... < a_n)$ be a sequence of positive integers. Let $C(\mathbf{a})$ be the affine monomial curve in \mathbb{A}^n parametrized by $t \to (t^{a_1}, ..., t^{a_n})$. Let $I(\mathbf{a})$ be the defining ideal of $C(\mathbf{a})$ in $K[x_1, ..., x_n]$. For each positive integer j, let $\mathbf{a} + j$ be the sequence $(a_1 + j, ..., a_n + j)$. In this talk, we present a proof of the conjecture of Herzog and Srinivasan saying that the betti numbers of $I(\mathbf{a} + j)$ are eventually periodic in j with period $a_n - a_1$. When j is large enough, we describe the betti table for the closure of $C(\mathbf{a} + j)$ in \mathbb{P}^n . (Received August 15, 2013)