1092-60-84 Michael B Woodroofe* (michaelw@umich.edu). Quenched Convergence for Normalized Sums of a Stationary Process.

Consider a stationary Markov chain W_0, W_1, \cdots with transition function Q and marginal distribution π , $Q(w, B) = P[W_{n+1} \in B|W_n = w]$ and $\pi\{B\} = P[W_n \in B]$. Given a $g \in L^2(\pi)$ for which $\int gd\pi = 0$, let $X_k = g(W_k)$, $S_n = X_1 + \cdots + X_n$, $\sigma_n^2 = E(S_n^2)$, and $F_n(z) = P[S_N/\sigma_n \leq z]$. Interest center on cases in which F_n converges weakly to the standard normal distribution function Φ . In touch cases, the convergence is said to be annealed. Next, let $G_n(w; z) = P[S_n/\sigma_n \leq z|W_0 = w]$, so that $D_n(w; \cdot)$ is the conditional distribution function of S_n/σ_n given $W_0 = w$. If $G_n(w; \cdot)$ converges (weakly) to Φ for *a.e.* $w(\pi)$, then the convergence is said to be quenched. Another possibility it that $G_n(W_0; \cdot)$ converges to Φ in probability. In this case, the convergence is said to be weakly quenched. The definitions extend directly to a stationary process $\cdots X_{-1}, X_0, X_1, \cdots$ with mean 0 and finition variance by letting $W_n = (\cdots, X_{n-1}X_n)$. Recent research on quenched convergence are known is reviewed and some new results presented. (Received July 30, 2013)