Akihiro Higashitani* (a-higashitani@cr.math.sci.osaka-u.ac.jp). Minkowski sums of edge polytopes.
Let G be a connected simple graph on the vertex set $\{1, \ldots, d\}$ with the edge set $E(G)$ and let \mathcal{P}_{G} be the edge polytope of G, which is the convex hull of $\left\{\mathbf{e}_{i}+\mathbf{e}_{j}:\{i, j\} \in E(G)\right\}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the unit coordinate vectors of \mathbb{R}^{d}. For an integral convex polytope $\mathcal{P} \subset \mathbb{R}^{N}$, we say that \mathcal{P} possesses the integer decomposition property if for any positive integer k and for any $\alpha \in k \mathcal{P} \cap \mathbb{Z}^{N}$, there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{P} \cap \mathbb{Z}^{N}$ such that $\alpha=\alpha_{1}+\cdots+\alpha_{k}$. It is a fundamental and interesting problem to give a complete characterization when the Minkowski sum $\mathcal{P}_{G}+\mathcal{P}_{G^{\prime}}$ of two edge polytopes of graphs G and G^{\prime} on the same vertex set possesses the integer decomposition property. In this talk, some partial answers of this problem will be presented. (Received August 05, 2013)

