1092-45-347 Irina Mitrea* (imitrea@temple.edu), 1805 N. Broad St., Department of Mathematics, Temple University, Wachman Hall, Philadelphia, PA 19122. Szegö Projections and Kerzman-Stein Formulas.

Hardy spaces constitute a classical topic at the interface between Complex Analysis and Harmonic Analysis and progress in a deeper understanding of their geometric and functional analytic properties can have a fundamental impact on related issues. For example, the direct topological sum decomposition of $L^2(\Sigma)$ into $\mathcal{H}^2_{\pm}(\Sigma)$ (traces on Σ of holomorphic functions on either side of Σ) in the case when Σ is a Lipschitz curve in the plane is equivalent to the boundedness of the principal value version of the Cauchy operator on $L^2(\Sigma)$ (a famous result due to Calderón for small Lipschitz constants, and to Coifman, McIntosh and Meyer in full generality). In this talk I will address the question whether the orthogonal projection S of the Hilbert space $L^2(\Sigma)$ onto the closed subspace $\mathcal{H}^2_+(\Sigma)$ (or $\mathcal{H}^2_-(\Sigma)$) has a bounded extension as an operator on $L^p(\Sigma)$ with $p \neq 2$. This is a rather delicate issue, which interfaces tightly with the geometric character of Σ . The main tools are a new generation of commutator estimates and a far-reaching extension of the so-called Kerzman-Stein formula from Complex Analysis. This is joint work with M. Mitrea and M. Taylor. (Received August 13, 2013)