Laszlo A. Szekely* (szekely@math.sc.edu) and Hua Wang (hwang@georgiasouthern.edu). Extremal values of ratios: distance problems vs. subtree problems in trees. Preliminary report.
The authors pointed out a dual behaviour of two tree indices, the Wiener index and the number of subtrees [Discrete Appl. Math. 1552006, 374-385; Adv. Appl. Math. 34(2005), 138-155]. Wagner [SIAM J. Disc. Math. 21(2007), 33-46] found a large negative correlation between these quantities. Barefoot, Entringer and Székely [Discrete Appl. Math. 80(1997), 37-56] determined extremal values of $\sigma_{T}(w) / \sigma_{T}(u), \sigma_{T}(w) / \sigma_{T}(v), \sigma(T) / \sigma_{T}(v)$, and $\sigma(T) / \sigma_{T}(w)$, where T is a tree on n vertices, v is in the centroid of the tree T, and u, w are leaves in T, and $\sigma_{T}(x)$ is the sum of distances from x to all other vertices of the tree. Now we test how far the negative correlation between distances and subtrees go if we look for the extremal values of $F_{T}(w) / F_{T}(u), F_{T}(w) / F_{T}(v), F(T) / F_{T}(v)$, and $F(T) / F_{T}(w)$, where T is a tree on n vertices, v is in the subtree core of the tree T, and u, w are leaves in $T, F(T)$ is number of subtrees of T and $F_{T}(x)$ is number of those containing the vertex x-the complete analogue, changing distances to the number of subtrees. The conclusion is that analogous phenomena hold for these ratios. (Received July 28, 2013)

