Jaehoon Kim* (kim805@illinois.edu), 1409 W. Green Street, Urbana, IL 61801, and Alexandr V Kostochka and Xuding Zhu. (0,1)-improper coloring of sparse graph.
A graph G is a $(0,1)$-colorable if $V(G)$ can be partitioned into two sets V_{0} and V_{1} so that $G\left[V_{0}\right]$ is an independent set and $G\left[V_{1}\right]$ has maximum degree at most 1 . The problem of verifying whether a graph is $(0,1)$-colorable is NP-complete even in the class of planar graphs of girth 9 .

Maximum average degree, $\operatorname{Mad}(G)=\max _{H \subset G}\left\{\frac{2|E(H)|}{|V(H)|}\right\}$, is a graph parameter measuring how sparse the graph G is. Borodin and Kostochka showed that every graph G with $\operatorname{Mad}(G) \leq \frac{12}{5}$ is $(0,1)$-colorable, thus every planar graph with girth at least 12 also is $(0,1)$-colorable.

The aim of this talk is to prove that every triangle-free graph G with $\operatorname{Mad}(G) \leq \frac{22}{9}$ is $(0,1)$-colorable. We prove the slightly stronger statement that every triangle-free graph G with $|E(H)|<\frac{11|V(H)|+5}{9}$ for every subgraph H is $(0,1)$ colorable and show that there are infinitely many not $(0,1)$-colorable graphs G with $|E(G)|=\frac{11|V(G)|+5}{9}$. (Received August 14, 2013)

