1092-05-225 **J Balogh** and **J Butterfield***, butter@umn.edu, and **P Hu** and **J Lenz**. Mantel's Theorem for Random Hypergraphs.

A cornerstone result in extremal graph theory is Mantel's Theorem, which states that every maximum triangle-free subgraph of K_n is bipartite. A sparse version of Mantel's Theorem is that, for sufficiently large p, every maximum triangle-free subgraph of G(n, p) is with high probability (w.h.p.) bipartite. Recently, DeMarco and Kahn proved this for $p > K\sqrt{\log n/n}$ for some constant K, and apart from the value of the constant this bound is best possible. We study an extremal problem of this type in random hypergraphs. Denote by F_5 the 3-uniform hypergraph with vertex set $\{a, b, c, d, e\}$ and edge set $\{abc, ade, bde\}$. Frankl and Füredi proved that the maximum 3-uniform hypergraph on n vertices containing no copy of F_5 is tripartite for n > 3000. It is natural to ask for what p is every maximum F_5 -free subhypergraph of $G^3(n, p)$ w.h.p. tripartite. We show this holds for $p > K \log n/n$ for some constant K and does not hold if $p = 0.1\sqrt{\log n/n}$. (Received August 10, 2013)