A cornerstone result in extremal graph theory is Mantel's Theorem, which states that every maximum triangle-free subgraph of K_{n} is bipartite. A sparse version of Mantel's Theorem is that, for sufficiently large p, every maximum triangle-free subgraph of $G(n, p)$ is with high probability (w.h.p.) bipartite. Recently, DeMarco and Kahn proved this for $p>K \sqrt{\log n / n}$ for some constant K, and apart from the value of the constant this bound is best possible. We study an extremal problem of this type in random hypergraphs. Denote by F_{5} the 3 -uniform hypergraph with vertex set $\{a, b, c, d, e\}$ and edge set $\{a b c, a d e, b d e\}$. Frankl and Füredi proved that the maximum 3 -uniform hypergraph on n vertices containing no copy of F_{5} is tripartite for $n>3000$. It is natural to ask for what p is every maximum F_{5}-free subhypergraph of $G^{3}(n, p)$ w.h.p. tripartite. We show this holds for $p>K \log n / n$ for some constant K and does not hold if $p=0.1 \sqrt{\log n} / n$. (Received August 10, 2013)

