We are interested in maximizing the number of pairwise unrelated embeddings of a poset P in the family of all subsets of $[n]$. For instance, Sperner showed that when P is one element, $\binom{n}{\lfloor n / 2\rfloor}$ is the maximum number of embeddings of P. Griggs, Stahl, and Trotter have shown that when P is a chain on k elements, $\frac{1}{2^{k-1}}\binom{n}{\lfloor n / 2\rfloor}$ is asymptotically the maximum number of copies of P. We prove that for any P the maximum number of unrelated copies of P is asymptotic to a constant times $\binom{n}{\lfloor n / 2\rfloor}$. Moreover, the constant has the form $1 / c(P)$, where $c(P)$ is an integer related to representing P by subsets. (Received August 08, 2013)

