1083-57-189 Susan Abernathy*, sabern1@tigers.lsu.edu. On Krebes' tangle.
A genus-1 tangle \mathcal{G} is an arc properly embedded in a standardly embedded solid torus S in the 3 -sphere. We say that a genus-1 tangle embeds in a knot $K \subseteq S^{3}$ if the tangle can be completed by adding an arc exterior to the solid torus to form the knot K. We call K a closure of \mathcal{G}. An obstruction to embedding a genus- 1 tangle \mathcal{G} in a knot is given by torsion in the homology of branched covers of S branched over \mathcal{G}. We examine a particular example \mathcal{A} of a genus- 1 tangle, given by Krebes, and consider its two double-branched covers. Using this homological obstruction, we show that any closure of \mathcal{A} obtained via an arc which passes through the hole of S an odd number of times must have determinant divisible by three. A resulting corollary is that if \mathcal{A} embeds in the unknot, then the arc which completes \mathcal{A} to the unknot must pass through the hole of S an even number of times. (Received August 27, 2012)

