1083-13-30Thomas G. Lucas* (tglucas@uncc.edu), Department of Mathematics & Statistics, University
of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC 28223. The Clique Ideal
Property.

For a commutative ring R, one can form a graph $\Gamma(R)^*$ where the vertices are the zero divisors of R (including 0) and the edges are the pairs $\{a, b\}$ where ab = 0 with $a \neq b$. A clique of $\Gamma(R)^*$ is a nonempty subset X such that ab = 0 for all $a \neq b$ in X. If R is a finite ring, there is always a maximum clique of $\Gamma(R)^*$ – a clique X such that $|X| \geq |Y|$ for all cliques Y. We say that a finite ring R has the clique ideal property if each maximum clique of $\Gamma(R)^*$ is an ideal of R. For each positive integer n > 1, the ring $R = \mathbb{Z}_n[x]/(x^2)$ is a finite ring with the clique ideal property. In contrast, \mathbb{Z}_n has the clique ideal property if and only if n is either a perfect square or a prime. (Received July 23, 2012)