Consider the polynomial ring $R=\mathrm{k}[s, t, u, v]$ over an algebraically closed field k . Regard R as a bigraded k -algebra, in which s, t have degree $(1,0)$ and u, v have degree $(0,1)$. Let $f_{0}, f_{1}, f_{2}, f_{3}$ be bihomogeneous polynomials of degree $(2,1)$ with no common zeros on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and I the ideal generated by the f_{i} 's. In a joint work with H. Schenck and A. Seceleanu we classify all possible minimal free resolutions of R / I and we relate the syzygies of the f_{i} 's to the singularities of the projective surface S in \mathbb{P}^{3} parametrized by the f_{i} 's over $\mathbb{P}^{1} \times \mathbb{P}^{1}$. These resolutions play a key role in determining the implicit equation for S. This problem arises from a real world application in geometric modeling, where one would like to understand the implicit equation and singular locus of a parametric surface. (Received August 26, 2012)

