1083-05-96 Lex E. Renner* (lex@uwo.ca), Department of Mathematics, Middlesex College, Western University, London, Ontario N6A 5B7, Canada. *Generalized Rook Monoids*. Preliminary report. The starting point for this talk is the observation that the rook monoid R_n indexes the set of $B \times B$ -orbits on the monoid $M_n(k)$ of $n \times n$ matrices over the field k. Here $B \subseteq Gl_n(k)$ is the subgroup of upper-triangular $n \times n$ matrices. But there is a much more general statement. If M is an irreducible, reductive monoid with unit group G, and Borel subgroup $B \subseteq G$, then the set of two-sided B-orbits $R(M) = B \setminus M/B$ has the natural structure of a finite inverse monoid with unit group W, the Weyl group of G.

Many familiar combinatorial notions "come from" R_n (e.g. Catalan numbers, Sterling numbers). And many of these can be generalized to R(M), for any reductive monoid M.

But there are many interesting geometric questions here. (1) What if M is associated with the wonderful embedding? (2) What if $M \setminus \{0\}$ is rationally smooth? (3) What kind of combinatorics on R(M) arises from the cell decomposition of M, and how do we compute the dimension of each cell? (Received August 22, 2012)