1083-05-81 Brian K. Miceli* (bmiceli@trinity.edu), Mathematics Department, One Trinity Place, San Antonio, TX 78213. A rook model for poly-Stirling numbers.
Let $p(x)$ denote a polynomial and consider the recursion

$$
S(n+1, k, p(x))=S(n, k-1, p(x))+p(k) S(n, k, p(x)),
$$

where $S(0,0, p(x))=1$ and $S(n, k, p(x))=0$ if $n<k$ or $k<0$. We call such numbers poly-Stirling numbers of the second kind. In the case where $p(x)=x$, this recursive formula defines the well-known classical Stirling numbers of the second kind, and in the case where $p(x)=x^{2}$ this recursive formula defines the triangle central factorial numbers. In this talk we define a rook theory model which gives a combinatorial interpretation of poly-Stirling numbers for general $p(x)$ with nonnegative, integer coefficients. We also define two q-analogues of this formula and give corresponding rook theoretic interpretations. (Received August 19, 2012)

