1090-13-434
Alina Florescu* (alina-florescu@uiowa.edu). Generalized Integer Factorizations. Preliminary report.
D. D. Anderson and A. Frazier introduced a general theory of factorization in On a general theory of factorization in integral domains, Rocky Mountain J. Math. vol. 41, no. 3 (2011), 663-705.

Fixing a non-negative integer n, a τ_{n}-factorization of an integer $a(\neq-1,0,1)$ is a factorization of the form

$$
a=a_{1} a_{2} \ldots a_{k} \quad \text { or } \quad a=(-1) a_{1} a_{2} \ldots a_{k}
$$

where $a_{1} \equiv a_{2} \equiv \ldots \equiv a_{k} \bmod n$ and a_{i} are non-units. A reduced τ_{n}-factorization of a is a τ_{n}-factorization of the first type, $a=a_{1} a_{2} \ldots a_{k}$, with $a_{1} \equiv a_{2} \equiv \ldots \equiv a_{k} \bmod n$ and $a_{i} \neq \pm 1$. We will compare τ_{n}-factorizations of the integers, reduced τ_{n}-factorizations and τ_{n}-factorizations of the natural numbers and discuss how the Fundamental Theorem of Arithmetic extends to these factorizations. (Received March 06, 2013)

