1090-13-434 Alina Florescu* (alina-florescu@uiowa.edu). Generalized Integer Factorizations. Preliminary report.

D. D. Anderson and A. Frazier introduced a general theory of factorization in On a general theory of factorization in integral domains, Rocky Mountain J. Math. vol. 41, no. 3 (2011), 663-705.

Fixing a non-negative integer n, a τ_n -factorization of an integer $a \ (\neq -1, 0, 1)$ is a factorization of the form

$$a = a_1 a_2 \dots a_k$$
 or $a = (-1)a_1 a_2 \dots a_k$

where $a_1 \equiv a_2 \equiv \ldots \equiv a_k \mod n$ and a_i are non-units. A reduced τ_n -factorization of a is a τ_n -factorization of the first type, $a = a_1 a_2 \ldots a_k$, with $a_1 \equiv a_2 \equiv \ldots \equiv a_k \mod n$ and $a_i \neq \pm 1$. We will compare τ_n -factorizations of the integers, reduced τ_n -factorizations and τ_n -factorizations of the natural numbers and discuss how the Fundamental Theorem of Arithmetic extends to these factorizations. (Received March 06, 2013)