1073-22-223 Alexandru G Atim* (atima@benedict.edu), 1600 Harden St., Columbia, SC 29204, and Robert R Kallman, 1155 Union Circle #311430, Denton, TX 76203. A Property of Isometry Groups of a Hilbert Space.

Let G be a Polish group. G is said to be an algebraically determined Polish group if for any Polish group H and any algebraic isomorphism $\varphi : H \to G$ we have that φ is a topological isomorphism. Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{U}(\mathcal{H})$ be the group of unitary operators acting on \mathcal{H} . The purpose of this paper is to prove that the complex isometry group of $\mathcal{H}, \mathcal{H} \rtimes \mathcal{U}(\mathcal{H})$ is algebraically determined Polish group. Similar results hold for most (but not all) of the finite dimensional complex isometry groups and for their real Hilbert space analogues. (Received August 01, 2011)