Let $a, b, c \geq 2$ be integers satisfying $1 / a+1 / b+1 / c>1$. Darmon and Granville proved that the generalized Fermat equation $x^{a}+y^{b}=z^{c}$ has only finitely many coprime integer solutions; conjecturally something stronger is true: for $a, b, c \geq 3$ there are no non-trivial solutions and for $(a, b, c)=(2,3, n)$ with $n \geq 10$ the only solutions are the trivial solutions and ($\pm 3,-2,1$) (or ($\pm 3,-2, \pm 1$) when n is even). I'll explain how the modular method used to prove Fermat's last theorem adapts to solve generalized Fermat equations and use it to solve the equation $x^{2}+y^{3}=z^{10}$. (Received ,)

