1073-05-56 Daniel W. Cranston^{*} (dcranston[@]vcu.edu) and Gexin Yu. Linear Choosability of Sparse Graphs.

A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted $lc_{\ell}(G)$, of sparse graphs. The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degrees of all subgraphs of G. It is clear that any graph G with maximum degree $\Delta(G)$ satisfies $lc_{\ell}(G) \geq \lceil \Delta(G)/2 \rceil + 1$. In this paper, we prove the following results: (1) if mad(G) < 12/5 and $\Delta(G) \geq 3$, then $lc_{\ell}(G) = \lceil \Delta(G)/2 \rceil + 1$, and we give an infinite family of examples to show that this result is best possible; (2) if mad(G) < 3 and $\Delta(G) \geq 9$, then $lc_{\ell}(G) \leq \lceil \Delta(G)/2 \rceil + 2$, and we give an infinite family of examples to show that the bound on mad(G) cannot be increased in general; (3) if G is planar and has girth at least 5, then $lc_{\ell}(G) \leq \lceil \Delta(G)/2 \rceil + 4$. (Received July 24, 2011)