Jingfen Lan* (a-za1107@163.com), 1907 Wheat St. Apt.B, Columbia, SC 29205, and Linyuan Lu (lu@math.sc.edu) and Lingsheng Shi (lshi@math.tsinghua.edu.cn). Graphs with Diameter n-e Minimizing the Spectral Radius.
For a fixed integer $e \geq 1$, let $G_{n, n-e}^{\min }$ be a graph with minimal spectral radius among all connected graphs on n vertices with diameter $n-e$. For $e=1,2,3,4,5, G_{n, n-e}^{\min }$ were determined before. Then Cioabă-van Dam-Koolen-Lee conjectured for fixed $e \geq 6$ that $G_{n, n-e}^{\min }$ is in the family $\boldsymbol{\Phi}_{n, e}=\left\{P_{2,1, \ldots 1,2, n-e+1}^{2, m_{2}, \ldots, m_{e-4}, n-e-2} \mid 2<m_{2}<\cdots<m_{e-4}<n-e-2\right\}$. We settle their conjecture positively here.

Let $T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}=P_{2,1, \ldots 1,2, n-e+1}^{2, m_{2}, \ldots, m_{e-4}, e-2}$ with $k_{i}=m_{i+1}-m_{i}-1$, for $1 \leq i \leq e-4$, here $m_{1}=2$ and $m_{e-3}=n-e-2$. Let $s=\frac{n-6}{e-4}-2=\frac{\sum_{i=1}^{e-4} k_{i}+2}{e-4}$. For $e \geq 6$ and sufficiently large n, we proved that $G_{n, n-e}^{\min }$ must be one of the trees $T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}$ with the parameters satisfying $\lfloor s\rfloor-1 \leq k_{j} \leq\lfloor s\rfloor \leq k_{i} \leq\lceil s\rceil+1$ and $0 \leq k_{i}-k_{j} \leq 2$ for $j=1, e-4$ and $i=2, \ldots, e-5$; $\left|k_{i}-k_{j}\right| \leq 1$ for $2 \leq i, j \leq e-5$. These results are best possible as shown by cases $e=6,7,8$, where $G_{n, n-e}^{m i n}$ are completely determined. Moreover, if $n-6$ is divisible by $e-4$ and n is sufficiently large, then $G_{n, e}^{\min }=T_{(s-1, s, s, \ldots, s, s-1)}$. (Received July 21, 2011)

