Jacob Fox and Po-Shen Loh* (ploh@cmu.edu), Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. On a problem of Erdős and Rothschild on edges in triangles.
Erdős and Rothschild asked to estimate the maximum number, denoted by $h(n, c)$, such that every n-vertex graph with at least $c n^{2}$ edges, each of which is contained in at least one triangle, must contain an edge that is in at least $h(n, c)$ triangles. In particular, Erdős asked in 1987 to determine whether for every $c>0$ there is $\epsilon>0$ such that $h(n, c)>n^{\epsilon}$ for all sufficiently large n. We prove that $h(n, c)=n^{O(1 / \log \log n)}$ for every fixed $c<1 / 4$. This gives a negative answer to the question of Erdős, and is best possible in terms of the range for c, as it is known that every n-vertex graph with more than $n^{2} / 4$ edges contains an edge that is in at least $n / 6$ triangles.

Joint work with Jacob Fox. (Received July 16, 2011)

