1073-05-28 Adriano M. Garsia* (garsia@math.ucsd.edu), 4695 Mt Armet Dr, San Diego, CA 92117. A new "dinv" statistic in the Theory of Parking Functions and Diagonal Harmonics.

The decade old "shuffle conjecture" gives a Parking function interpretation to the Frobenius characteristic of Diagonal Harmonic polynomials. A recent more refined version by Haglund-Morse-Zabrocki states that the Hall scalar product of the homogeneous basis element h_{μ} with the Nabla operator acting upon a modified Hall-Littlewood polynomial indexed by a composition p enumerates, by $t^{area}q^{dinv}$, the family of Parking Functions whose supporting Dyck path hits the main diagonal according to p and whose diagonal word is a shuffle of type μ . Computer explorations show that when $\mu = (j, n)$, by replacing Nabla with the Macdonald eigen-operator Δ_{h_j} the composition p gives the position of the diagonal hits of the Dyck path supporting cars $j + 1, j + 2, \ldots, j + n$. The authors prove a recursion satisfied by the resulting polynomial and use it to construct a dinv-like statistic "ndinv" proving that this polynomial enumerates the latter family of Parking Functions by $t^{area}q^{ndinv}$. This is joint work of the presenter with A. Duane and M. Zabrocki. (Received July 08, 2011)