1073-05-209 Louis DeBiasio* (debiasld@muohio.edu), Andrzej Czygrinow and Brendan Nagle. Tiling 3-uniform hypergraphs.

We say a hypergraph H can be *tiled* with a hypergraph F if H contains $\frac{|H|}{|F|}$ vertex disjoint copies of F (we will suppose that |H| is divisible by |F|). Let $t_{\ell}^{k}(n, F)$ be the smallest integer d so that any k-uniform hypergraph H on n vertices with $\delta_{\ell}(H) \geq d$ can be tiled with F (where $\delta_{\ell}(H)$ is the minimum ℓ -degree of the hypergraph H). For graphs, $t_{1}^{2}(n, F)$ is known up to an additive constant for every graph F due to a result of Kühn and Osthus. Furthermore $t_{1}^{2}(n, F)$ is known exactly for some graphs – notably the Hajnal-Szemerédi theorem implies that $t_{1}^{2}(n, K_{t}) = (1 - \frac{1}{t})n$.

In hypergraphs, much less is known about the tiling problem and in this talk I will mainly focus on what is known about $t_2^3(n, F)$. There are a few graphs F for which $t_2^3(n, F)$ is known asymptotically and only one graph F for which $t_2^3(n, F)$ is known exactly. After giving a survey, I will discuss our proof of an exact result for $t_2^3(n, C_4)$, where C_4 is the 3-uniform hypergraph on 4 vertices with 2 edges. (Received August 01, 2011)