Allen Knutson* (allenk@math.cornell.edu). Positroids, shifting, and a combinatorial Vakil's "geometric Littlewood-Richardson rule".
Erdős-Ko-Rado defined a "shifting" operation $i \rightarrow j$ on collections from $\binom{[n]}{k}$; loosely speaking, one turns $i$ into $j$ s unless something's in the way. The "shifted" (or "Schubert") matroids that are invariant under all shifts with $i<j$ are the ones whose coloop-free flats are initial intervals $[1, j]$. An interval positroid is a matroid on $[1, n]$ all of whose coloop-free flats are intervals $[i, j]$, a particularly nice class that includes lattice path matroids.

A shift $M^{\prime}$ of a matroid $M$ on $[1, n]$ is usually not a matroid (though the "sweep" $M \cup M^{\prime}$ is). I'll explain why it's algebro-geometrically interesting to look for the maximal submatroids of a non-matroid such as $M^{\prime}$.

Then I'll define (partially filled) "puzzles", and associate an interval positroid to each one. Filling in a puzzle piece corresponds to shifting the matroid, then decomposing the collection into maximal submatroids. This is a combinatorial way of following Vakil's "geometric Littlewood-Richardson rule". (Received August 01, 2011)

