Given a k-uniform hypergraph (or a k-graph for short) H and a positive integer n, the Turán number $e x_{k}(n, H)$ of H is the maximum number of edges in a k-graph \mathcal{F} on n vertices that does not contain H as a subhypergraph. The Turán problem for hypergraphs is difficult and $e x_{k}(n, H)$ is asymptotically determined only for very few graphs. Exact values are known only for a handful of k-graphs H, most of which are on a small number of vertices.

A k-uniform linear path \mathcal{P}_{ℓ}^{k} of length ℓ is a k-graph with hyperedges F_{1}, \ldots, F_{ℓ} such that $\left|F_{i} \cap F_{i+1}\right|=1$ for all i and $F_{i} \cap F_{j}=\emptyset$ whenever $|i-j|>1$. Frankl determined $e x_{k}\left(n, \mathcal{P}_{\ell}^{k}\right)$ when $\ell=2$. Here, we determine $e x_{k}\left(n, \mathcal{P}_{\ell}^{k}\right)$ exactly for all fixed $\ell \geq 1, k \geq 4$, and sufficiently large n. We show that $e x_{k}\left(n, \mathcal{P}_{2 t+1}^{k}\right)=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\ldots+\binom{n-t}{k-1}$ and $\operatorname{ex}\left(n, \mathcal{P}_{2 t+2}^{k}\right)=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\ldots+\binom{n-t}{k-1}+\binom{n-t-2}{k-2}$. We also describe the unique extremal graphs and establish stability results on these bounds. Our main method is the delta-system method. (Received August 02, 2011)

