1073-05-120 Jerrold R. Griggs* (j@sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, and Wei-Tian Li and Linyuan Lu. Forbidden subposets with nice answers. Preliminary report.
We consider the problem of determining the largest size $\mathrm{La}(n, H)$ of a family of subsets of $[n]:=\{1, \ldots, n\}$ that contains no (weak) subposet isomorphic to a given poset H. For some posets H we may know $\operatorname{La}(n, H)$ exactly for all $n>n_{o}$, and in such cases, it may be simply the sum of the k middle binomial coefficients in n, where k and n_{o} depend on H. This is true for chains and for the four-element butterfly poset. For other posets H, such as the three-element poset V, we can describe the asymptotic behavior of $\mathrm{La}(n, H)$, even though it appears to be exceedingly difficult to determine $\mathrm{La}(n, H)$ more precisely. In all known cases, we have $\lim _{n \rightarrow \infty} \mathrm{La}(n, P) /\binom{n}{\lfloor n / 2\rfloor}$ exists and is integral. Finally, there are posets H that seem to be more difficult, such as the four-element diamond D_{2}, for which the existence of $\lim _{n \rightarrow \infty} \mathrm{La}(n, P) /\binom{n}{\lfloor n / 2\rfloor}$ remains open. In recent progress, we can add various infinite families of posets H to the list of those which can be completely solved. (Received July 29, 2011)

