1078-82-206 **Kyoichi Tsurusaki*** (turusaki@kanagawa-iri.go.jp), 705-1,Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan. General polygonal length dependence of the linking probability for ideal random polygons.

We discuss the linking probability, P_{link} , that two ideal random polygons (RPs) are topologically entangled. P_{link} is a function of the distance between two RPs, R, and the polygon length, N. We have shown that the scaling behavior of P_{link} can be expressed by a simple function: $P_{\text{link}}(\xi; N) = \exp(-\kappa_1 \xi^{\mu_1}) - C \exp(-\kappa_2 \xi^{\mu_2})$, where ξ is the ratio of R to the radius of gyration $R_g: \xi = R/R_G$. The values of $\kappa_1, \mu_1, \kappa_2, \mu_2$ and C have been numerically evaluated for RPs with discrete values of N from 32 to 512. Considering physical requirements of P_{link} in two limits of $N \to 0$ and $N \to \infty$, we can derive six constraints between these parameters. By taking account of both the numerical data and the constraints, we propose function forms of $\kappa_1(N), \mu_1(N), \kappa_2(N), \mu_2(N)$ and C(N). As a consequence, we can calculate P_{link} for not only a finite value of N but also $N \to \infty$. We also introduce an application of this result to the ring polymer system. (Received December 07, 2011)