243-0435, Japan. General polygonal length dependence of the linking probability for ideal random polygons.
We discuss the linking probability, $P_{\text {link }}$, that two ideal random polygons (RPs) are topologically entangled. $P_{\text {link }}$ is a function of the distance between two RPs, R, and the polygon length, N. We have shown that the scaling behavior of $P_{\text {link }}$ can be expressed by a simple function: $P_{\text {link }}(\xi ; N)=\exp \left(-\kappa_{1} \xi^{\mu_{1}}\right)-C \exp \left(-\kappa_{2} \xi^{\mu_{2}}\right)$, where ξ is the ratio of R to the radius of gyration $R_{g}: \xi=R / R_{G}$. The values of $\kappa_{1}, \mu_{1}, \kappa_{2}, \mu_{2}$ and C have been numerically evaluated for RPs with discrete values of N from 32 to 512 . Considering physical requirements of $P_{\text {link }}$ in two limits of $N \rightarrow 0$ and $N \rightarrow \infty$, we can derive six constraints between these parameters. By taking account of both the numerical data and the constraints, we propose function forms of $\kappa_{1}(N), \mu_{1}(N), \kappa_{2}(N), \mu_{2}(N)$ and $C(N)$. As a consequence, we can calculate $P_{\text {link }}$ for not only a finite value of N but also $N \rightarrow \infty$. We also introduce an application of this result to the ring polymer system. (Received December 07, 2011)

