Polygons in the cubic lattice are simple closed curves in three space and have well-defined knot types. The number of lattice polygons of length n and knot type K in the cubic lattice is $p_{n}(K)$, where we consider two polygons to be equivalent under translations in the lattice. For example, if K is the unknot \emptyset, then $p_{4}(\emptyset)=3, p_{6}(\emptyset)=22, p_{8}(\emptyset)=207$ and so on. Determining $p_{n}(K)$ for arbitrary n and knot types K is a difficult numerical problem, but the GAS-algorithm implemented with BFACF-style elementary moves can be used for approximate enumeration of $p_{n}(K)$, and also to sieve minimal length knotted polygons. In this talk I shall present and review some entropic and other properties of minimal length lattice polygons obtained by an implementation of the GAS-algorithm in the cubic, fcc and bcc lattices.

Joint work with Andrew Rechnitzer (Received December 02, 2011)

