1078-53-156 **Takashi Hashimoto*** (thashi@uec.tottori-u.ac.jp), 4-101, Koyama-Minami, Tottori, Tottori 6808550, Japan. A twisted moment map and its equivariance.

Let G be a linear connected complex reductive Lie group with Lie algebra \mathfrak{g} . Fixing λ in the dual of a Cartan subalgebra of \mathfrak{g} , take a parabolic subgroup Q of G whose Levi factor is the isotropy subgroup of λ in G, and $\{U_{\sigma}\}_{\sigma}$ the open covering of G/Q indexed by W/W_{λ} , where W_{λ} is the isotropy subgroup of λ in the Weyl group W. Then we construct holomorphic isomorphisms $\mu_{\lambda;\sigma}$ from T^*U_{σ} into $\Omega_{\lambda} := G.\lambda$ for σ , which will become G-equivariant if we let G act on the bundles by affine transformation. Hence we glue $\{T^*U_{\sigma}\}$ together by transition functions induced from the affine action of G to form $T^*(G/Q)_{\lambda}$. It is locally isomorphic to the cotangent bundle, so we define local isomorphisms from $T^*(G/Q)_{\lambda}|_{U_{\sigma}}$ into Ω_{λ} by the same formula as $\{\mu_{\lambda;\sigma}\}$, which now satisfy the compatibility condition. Patching together $\mu_{\lambda;\sigma}$'s, we obtain an holomorphic isomorphism μ_{λ} from $T^*(G/Q)_{\lambda}$ onto Ω_{λ} . Moreover, this map preserves the symplectic forms on $T^*(G/Q)_{\lambda}$ and Ω_{λ} , which are naturally defined. (Received December 05, 2011)