A V Bondarenko (andriybond@gmail.com), Department of Mathematics, National Taras Shevchenko University, Kyiv, Ukraine, D P Hardin (doug.hardin@vanderbilt.edu), Department of Mathematics, Vanderbilt University, Nashville, TN 37240, and E B Saff* (edward.b.saff@vanderbilt.edu), Department of Mathmatics, Vanderbilt University, Nashville, TN 37240. Quasi-uniformity of best-packing configurations. Preliminary report.
Let A be a compact infinite metric space with metric m and let $\omega_{N}=\left\{x_{i}\right\}_{i=1}^{N} \subset A$ denote a configuration of $N \geq 2$ points in A. The separation distance of ω_{N} is

$$
\delta\left(\omega_{N}\right):=\min _{1 \leq i \neq j \leq N}\left(x_{i}, x_{j}\right)
$$

and the mesh norm (covering radius) of ω_{N} with respect to A is

$$
\rho\left(\omega_{N}, A\right):=\max _{y \in A} \min _{1 \leq i \leq N}\left(y, x_{i}\right) .
$$

An N-point best-packing configuration ω_{N}^{*} is a configuration such that

$$
\delta_{N}\left(\omega_{N}^{*}\right):=\max \left\{\delta\left(\omega_{N}\right): \omega_{N} \subset A,\left|\omega_{N}\right|=N\right\}
$$

We investigate upper and lower bounds for the mesh-separation ratio (or mesh-ratio)

$$
\gamma\left(\omega_{N}^{*}, A\right):=\rho\left(\omega_{N}^{*}, A\right) / \delta\left(\omega_{N}^{*}\right)
$$

Furthermore, we study this quantity for best-packing configurations that are the limits of N-point minimal Riesz s-energy configurations. For the sphere $S^{2} \subset \mathbb{R}^{3}$ we show that for $N=5$ the limit of such s-energy configurations as $s \rightarrow \infty$ is the pyramid with square base (the 5 -point best-packing configuration that has the maximum number of equal-distance pairs). (Received December 09, 2011)

