1078-34-349 Robert Buckingham*, Department of Mathematical Sciences, The University of Cincinnati, P.O. Box 210025, Cincinnati, OH 45221, and Peter D. Miller. Asymptotics of rational Painlevé II solutions.
The nonhomogenous Painlevé II equation has exactly one rational solution for specific values of the nonhomogenous term α. The real zeros of these rational functions have recently been shown to play an important role in a certain double-scaling limit for small-dispersion solutions of the sine-Gordon equation. Clarkson and Mansfield observed that the complex zeros (or poles) of the rational Painlevé II functions appear to have a highly regular triangular structure. We prove that, in the large- α limit, the scaled zeros (or poles) fill out a certain curvilinear triangular region in the complex plane. We also discuss progress on computing the leading-order asymptotic behavior of the rational solutions inside, outside, and at the edge of this root region. (Received December 13, 2011)

