1078-20-119 **M I Elashiry** and **D S Passman*** (passman@math.wisc.edu), Department of Mathematics, 603 Van Vleck Hall, University of Wisconsin, Madison, WI 53706. *Rewritable groups*.

A group G is said to satisfy the n-permutational property P_n if for all n-tuples (g_1, g_2, \ldots, g_n) of group elements, there exists a nonidentity permutation $\sigma \in \text{Sym}_n$ (depending upon the n-tuple) with $g_1g_2 \cdots g_n = g_{\sigma(1)}g_{\sigma(2)} \cdots g_{\sigma(n)}$. Similarly, G satisfies the n-rewritable property Q_n if for all n-tuples (g_1, g_2, \ldots, g_n) , there exist distinct permutations $\sigma, \tau \in \text{Sym}_n$ with $g_{\sigma(1)}g_{\sigma(2)} \cdots g_{\sigma(n)} = g_{\tau(1)}g_{\tau(2)} \cdots g_{\tau(n)}$. Obviously, P_n implies Q_n , but it is known that the converse is not true. Here we prove a conjecture of Blyth that Q_n implies P_m , where m is a fixed function of n. For this, we first show that there exist finite-valued functions a(n) and b(n) so that if G satisfies Q_n , then G has a characteristic subgroup N such that $|G:N| \leq a(n)$ and $|N'| \leq b(n)$. The conjecture then follows with m = a(n)(b(n) + 1). (Received November 29, 2011)