1078-03-399 Joseph S. Miller* (jmiller@math.wisc.edu). Cupping with random sets.

Antonin Kučera asked if the K-trivial sets could be characterized as those that cannot be cupped above \emptyset' with an incomplete Martin-Löf random. Furthermore, under the assumption that the non-K-trivial is Δ_2^0 , he asked if the incomplete Martin-Löf random cupping partner could also be Δ_2^0 . We answer both in the affirmative.

I will focus on the proof that if A is K-trivial, X is Martin-Löf random, and $A \oplus X$ computes \emptyset' , then X computes \emptyset' . This uses a recent result of Bienvenu, Hölzl, M. and Nies: a Martin-Löf random is complete iff it belongs to a Π_1^0 class in which its lower density is zero. Essentially, by factoring through this result and properties of K-trivials, we can show that X being complete *relative to* A is the same as X being complete.

The talk describes joint work with Adam Day. (Received December 13, 2011)