1071-35-64

J. Fleckinger, J.-P. Gossez^{*} (gossez^{Qulb.ac.be}) and F. de Thélin. Maximum and antimaximum principles: beyond the first eigenvalue.

Consider the Dirichlet problem

 $-\Delta u = \mu u + f \text{ in } \Omega, u = 0 \text{ on } \partial \Omega,$

with Ω a smooth bounded domain in \mathbb{R}^N . The well-known maximum and antimaximum principles give informations on the sign of the solution u when the parameter μ varies near the first eigenvalue λ_1 of the corresponding homogeneous problem. Our purpose in this talk is to introduce an analogue of these two principles when μ varies near a higher eigenvalue λ_k . Nodal domains play a central role in our study, as well as, in some cases, the Payne conjecture relative to the nodal line of a second eigenfunction in the plane. (Received February 13, 2011)