1069-20-163 **Jason Shaw*** (jshaw10@stmarytx.edu), Department of Mathematics, One Camino Santa Maria, San Antonio, TX 78228. *Commutator relations and the clones of finite groups.*

Let G be a group, and let $\operatorname{Clo}(G)$ denote the clone of G. We want to examine the following question: Does there exist an integer k > 0 such that for all groups G the clone of G is determined by the subgroups of G^k ? By 'determined' we mean that an operation $f \in \operatorname{Clo}(G)$ if and only if f preserves the subgroups of G^k . To examine this question the idea of a commutator relation for groups is extended to a higher order commutator relation for groups. We employ these higher order commutator relations for groups to study the clones of the dihedral 2-groups D_{2^n} , where n is an integer, $n \geq 3$. In so doing, we conclude that the smallest positive integer k(n) such that $\operatorname{Clo}(D_{2^n})$ is determined by the subgroups of $(D_{2^n})^{k(n)}$ satisfies the inequality $n < k(n) \leq 2^{n-1}$, a number that grows without bound as $n \to \infty$. Hence, we are able to prove that there does not exist an integer k > 0 such that for all groups G the clone of G is determined by the subgroups of G^k .

(Received January 21, 2011)