1062-31-27 Nageswari Shanmugalingam*, Department of Mathematical Sciences, P.O.Box 210025, University of Cincinnati, Cincinnati, OH 45221-0025, Estibalitz Durand, Universidad Complutense de Madrid, Department of Mathematics, Madrid, Spain, and Jesus Jaramillo, Universidad Complutense de Madrid, Department of Mathematics, Madrid, Spain. Geometric characterizations of infinity-Poincare inequality.
Much of the recent development of analysis in metric measure spaces focused on the so-called ($1, p$)-Poincaré inequality for $1 \leq p<\infty$. For certain values of p it is known that these inequalities are geometric in nature ($p=1$, and in the event that the measure on the space is Ahlfors Q-regular, then $p=Q$). In this talk we will focus on the other extreme value of $p=\infty$, and describe the geometry lying behind this inequality. Surprisingly, unlike in the $p=1$ and $p=Q$ case, the geometric characterization of ∞-Poincaré inequality is not quantitative. (Received June 22, 2010)

