1062-28-240Jasun Gong*, Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh,
Pittsburgh, PA 15260. Sobolev Imbeddings and Higher-Order Extensions. Preliminary report.

This is joint work with P. Hajłasz, P. Koskela, and X. Zhong.

Let p > n. Suppose that a domain Ω in \mathbb{R}^n has the $W^{1,p}$ -extension property; that is, there is a bounded linear operator

 $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbf{R}^n)$

so that $Ef|_{\Omega} = f$. It is clear that such domains satisfy the Sobolev imbedding theorem

$$|u(x) - u(y)| \le C ||\nabla u||_p |x - y|^{1 - n/p}.$$

Here we are interested in the converse direction, namely

Theorem. Let Ω be a domain in \mathbb{R}^n and let p > n. The following are equivalent:

- 1. Ω satisfies the Sobolev imbedding theorem;
- 2. Ω has the $W^{1,q}$ -extension property, for each $q \ge p$;
- 3. For each $m \in \mathbf{N}$, Ω has the $W^{m,q}$ -extension property, for each $q \ge p$; that is, there exists a bounded linear operator $E_m: W^{m,p}(\Omega) \to W^{m,p}(\mathbf{R}^n)$ so that $E_m f|_{\Omega} = f$.

If time permits, we will also discuss the borderline cases $p = \infty$ and p = n. In the first case, our main result recovers a classical theorem of H. Whitney. (Received August 10, 2010)