1062-22-21 Ellen J Goldstein* (ellen.goldstein@tufts.edu), Mathematics Department, 503 Boston Ave., Medford, MA 02155. Normality of Closures of Conjugacy Classes in Classical Groups. Preliminary report.

Given a linear algebraic group G over the algebraically closed field K of arbitrary characteristic, let \mathfrak{g} be its Lie algebra. The Zariski closure of the adjoint orbit \overline{Gx} for $x \in \mathfrak{g}$ is a subvariety of \mathfrak{g} . If $G = \operatorname{GL}(V)$ for V a finite dimensional vector space over K, then \overline{Gx} is a normal variety for all $x \in \mathfrak{g} = M_n(K)$ (Kraft-Procesi, Donkin). If G = O(V) or Sp(V), Kraft and Procesi proved that \overline{Gx} is normal for certain $x \in \mathfrak{o}(V)$ or $\mathfrak{sp}(V)$ in the case where $\operatorname{char}(K) = 0$. Following Donkin's proof for the general linear case in arbitrary characteristic, we show for certain nilpotent $x \in \mathfrak{g}$ that \overline{Gx} is normal when $\operatorname{char}(K) \neq 2$. The proof makes use of properties of modules admitting a good filtration as a substitute for the lack of complete reducibility in prime characteristic. (Received June 12, 2010)