Guantao Chen, Michael J. Ferrara, Ron Gould, Colton Magnant and John R. Schmitt* (jschmitt@middlebury.edu), Mathematics Department, Middlebury College, Warner Hall, Middlebury, VT 05753. *Minimum Saturated Graphs and Ramsey Graphs*.

Given a family of graphs \mathcal{F} , a graph G is \mathcal{F} -saturated if no member of \mathcal{F} is a subgraph of G but the addition of any new edge to G creates a copy of some member of \mathcal{F} . Let $sat(n,\mathcal{F})$ denote the minimum number of edges in an \mathcal{F} -saturated graph of order n. We say that a graph F arrows a t-tuple (F_1, \ldots, F_t) if any t-coloring of the edges of F contains a monochromatic F_i -subgraph in color i for some $i \in [t]$. We consider saturated graphs with respect to the family of graphs that arrow (K_3, K_3) and precisely determine the value of the sat-function for this family. In doing the latter, we confirm the smallest non-trivial case of a conjecture of Hanson and Toft. (Received March 16, 2010)