1068-35-61 William Green*, 600 Lincoln Ave., Charleston, IL 61920. Dispersive estimates for matrix and scalar Schrödinger operators in dimension five.
We study the non-selfadjoint matrix Schrödinger operator

$$
\mathcal{H}=\left[\begin{array}{cc}
-\Delta+\mu-V_{1} & -V_{2} \\
V_{2} & \Delta-\mu+V_{1}
\end{array}\right]
$$

in dimension five. This operator arises when linearizing about standing wave solutions in certain non-linear partial differential equations. Here $\mu>0$ and V_{1}, V_{2} are real-valued decaying potentials. We examine the boundedness of the evolution operator $e^{i t \mathcal{H}}$ in the sense of $L^{1} \rightarrow L^{\infty}$.

We prove $L^{1} \rightarrow L^{\infty}$ dispersive estimates for the matrix operator that are analogous to the known estimates for the evolution of the scalar Hamiltonian $H=-\Delta+V$. We show that if P_{c} is projection away from the eigenvalues of \mathcal{H}, along with standard assumptions on the spectrum of \mathcal{H},

$$
\left\|e^{i t \mathcal{H}} P_{c}\right\|_{1 \rightarrow \infty} \lesssim|t|^{-5 / 2}
$$

holds with optimal assumptions on regularity of the potentials. We further discuss an improvement on the decay assumptions for the scalar case. (Received January 10, 2011)

