1063-05-255 **Zoltan Furedi**^{*} (z-furedi@illinois.edu), Department of Mathematics, 1409 W Green Str, Urbana, IL 61801. Large B_d-free subfamilies.

Let $f(\mathcal{F}, \Gamma)$ denote the size of the largest subfamily of \mathcal{F} having property Γ , $f(\mathcal{F}, \Gamma) := \max\{|\mathcal{F}'| : \mathcal{F}' \subseteq \mathcal{F}, \mathcal{F}'\}$ has property $\Gamma\}$. Let $f(m, \Gamma) := \min\{f(\mathcal{F}, \Gamma) : |\mathcal{F}| = m\}$. First, we consider the case when Γ is the property that there are no four distinct sets in \mathcal{F} satisfying $F_1 \cup F_2 = F_3$, $F_1 \cap F_2 = F_4$. Such families are called B_2 -free. In 1972 Erdős and Shelah conjectured that $f(m, B_2$ -free) = $\Theta(m^{2/3})$. We prove that Erdős and Shelah's conjecture is true and establish some general lower and upper bounds on $f(m, B_d$ -free), where B_d is the Boolean lattice of dimension d. This is a joint work with Janos Barat, Ida Kantor, Younjin Kim, and Balazs Patkos. (Received August 17, 2010)