Zoltan Furedi* (z-furedi@illinois.edu), Department of Mathematics, 1409 W Green Str, Urbana, IL 61801. Large B_{d}-free subfamilies.
Let $f(\mathcal{F}, \Gamma)$ denote the size of the largest subfamily of \mathcal{F} having property $\Gamma, f(\mathcal{F}, \Gamma):=\max \left\{\left|\mathcal{F}^{\prime}\right|: \mathcal{F}^{\prime} \subseteq \mathcal{F}, \mathcal{F}^{\prime}\right.$ has property $\Gamma\}$. Let $f(m, \Gamma):=\min \{f(\mathcal{F}, \Gamma):|\mathcal{F}|=m\}$. First, we consider the case when Γ is the property that there are no four distinct sets in \mathcal{F} satisfying $F_{1} \cup F_{2}=F_{3}, F_{1} \cap F_{2}=F_{4}$. Such families are called B_{2}-free. In 1972 Erdős and Shelah conjectured that $f\left(m, B_{2}-f r e e\right)=\Theta\left(m^{2 / 3}\right)$. We prove that Erdős and Shelah's conjecture is true and establish some general lower and upper bounds on $f\left(m, B_{d^{-}}\right.$free $)$, where B_{d} is the Boolean lattice of dimension d. This is a joint work with Janos Barat, Ida Kantor, Younjin Kim, and Balazs Patkos. (Received August 17, 2010)

