1064-20-292 **Jeffrey M Riedl*** (riedl@uakron.edu), Department of Mathematics, 302 Buchtel Common, University of Akron, Akron, OH 44325-4002. *Duality for normal subgroups of wreath product p-groups.* Preliminary report.

Let *B* denote the direct product of *n* copies of the cyclic group of order *m*. For each subgroup *N* of *B* there is a natural way (related to the character theory of *B*) to define a particular subgroup of *B* that we denote as N^{\perp} . This map $N \mapsto N^{\perp}$ is inclusion-reversing and satisfies $|N| \cdot |N^{\perp}| = |B|$ and $(N^{\perp})^{\perp} = N$. Because of this last condition, we call N^{\perp} the "dual" of *N* in *B*. For each group *H* that acts via automorphisms on *B*, the dual of every *H*-invariant subgroup of *B* is easily seen to be *H*-invariant.

Now fix a prime p and an integer $d \ge 2$. Taking $n = p^d$ and $m = p^2$, we may regard B as the base group for the regular wreath product group W of the cyclic group of order p^2 by the cyclic group of order p^d . Let \mathcal{N} denote the set of all normal subgroups of W that are contained in B, and note that for each $N \in \mathcal{N}$ we have $N^{\perp} \in \mathcal{N}$. We have previously obtained a detailed description of all the members of the set \mathcal{N} . In this talk we present a result that describes in some detail how the dual map $N \mapsto N^{\perp}$ behaves on the set \mathcal{N} . (Received September 13, 2010)