kenneth W johnson* (kwj1@psu.edu), Math Department, PSU Abington, 1600 Woodland
Road, Abington, PA 19001. On the existence of simple loops with two non-trivial conjugacy classes. Preliminary report.
The Paige loop of order 120 has conjugacy classes of orders $63=\left(2^{3}-1\right)\left(2^{3}+1\right)$ (containing elements of order 2) and $56=\left(2^{3}-1\right) 2^{3}$ (containing elements of order 3). The question of whether this loop is part of a series of simple loops $Q(n)$ or order $2^{n}\left(2^{n+1}-1\right)$ with exactly two non-trivial conjugacy classes of sizes $\left(2^{n}-1\right) 2^{n}$ and $\left(2^{n}-1\right)\left(2^{n}+1\right)$ may be interesting to examine. There is no such $Q(2)$. This uses the GAP list of primitive groups and the Nagy program which constructs a loop transversal. For $n=3$ the Paige loop is the only loop with such classes. If $Q(4)$ exists it has order $496=16.31$ and classes of orders 240 and 255 . There are two primitive groups of degree 496 with suborbits of size 240 and 255 .

It seems more likely that a loop would exist for $n=5$ of order $32.63=2016$ with classes of order $31.32=992$ and $31.33=1023$. There are two primitive permutation groups of degree 2016 with suborbits of orders 992 and 1023 , of orders $50027557148216524800=2^{30} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 17 \cdot 31$ and $100055114296433049600=2^{31} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 17 \cdot 31$. (Received September 09, 2010)

