1064-17-403 **Tomasz Kowalski*** (kowatomasz@gmail.com), Av. Professof Gama Pinto 2, Lisbon, Portugal. Independent varieties of loops.

We characterise joins of disjoint varieties \mathcal{V}_1 , \mathcal{V}_2 of loops. The problem amounts to characterising independent varieties of loops. We obtain:

Theorem 1 \mathcal{V}_1 and \mathcal{V}_2 are independent if and only if there exist unary terms s(x) and s'(x), satisfying

- 1. $\mathcal{V}_1 \models s(x) = x, \ s'(x) = s'(y) = e,$
- 2. $\mathcal{V}_2 \models s(x) = s(y) = e, \ s'(x) = x.$

For varieties of power-associative loops with inverse property we can do better:

Theorem 2 \mathcal{V}_1 and \mathcal{V}_2 are independent if and only if there is an integer ℓ such that $\mathcal{V}_1 \models x^{\ell} = e$ and $\mathcal{V}_2 \models x^{\ell-1} = e$. Moreover, if both \mathcal{V}_1 and \mathcal{V}_2 are nontrivial, then $\ell > 2$.

Theorem 3 The following are equivalent.

- 1. \mathcal{V} satisfies the identities $x^{k(k-1)} = e$ and $(xy)^{1-k}(zu)^k = x^{1-k}z^ky^{1-k}u^k$ for some k > 2.
- 2. $\mathcal{V} = \mathcal{V}_1 \times \mathcal{V}_2$, for nontrivial independent varieties \mathcal{V}_1 and \mathcal{V}_2 .

(Received September 15, 2010)