(cdsmyth@uncg.edu). The number of non-crossing perfect matchings compatible with a 2-coloring. Let the vertices V of a convex $2 n$-gon be labeled 1 through $2 n$ in clockwise order. Let K be the complete graph on V whose edges are straight line segments. Let $c: V \rightarrow\{0,1\}$. Let $\phi(c)$ be the number of non-crossing perfect matchings of K that are properly colored by c. Interestingly, the $\phi(c)$ are precisely the non-zero moments of the circular operator of free probability (and also the renormalized asymptotic moments of a Gassian random matrix.)

We'll show the bound: $\phi(c) \leq C^{(\lceil n / k\rceil)}(k)$ where $2 k$ is the number of x such that $c(x) \neq c(x+1 \bmod 2 n)$ and where $C^{(a)}(b):=\frac{1}{a b+1}\binom{b(a+1)}{b}$ is the Fuss-Catalan number. (Received September 14, 2010)

