John Engbers* (jengbers@nd.edu), Department of Mathematics, 255 Hurley Hall, Notre Dame, IN 46556, and David Galvin. The typical structure of H-colorings of the Hamming cube.
The d-dimensional discrete hypercube Q_{d} is the graph on $\{0,1\}^{d}$ with two strings adjacent if they differ on one coordinate. For a graph H (possibly with loops), an H-coloring of Q_{d} is a function from $\{0,1\}^{d}$ to $V(H)$ which preserves adjacency. With appropriate choices of H, H-colorings can encode independent sets and proper colorings of Q_{d}.

We are interested in the following question: In a uniformly chosen H-coloring of Q_{d}, what proportion of vertices of Q_{d} get mapped to each vertex of H ? We obtain a quite precise answer to this question. For example, we can say that in a uniformly chosen proper $2 k$-coloring of Q_{d}, asymptotically almost surely each color class has size very close to $2^{d} /(2 k)$, and in a uniformly chosen proper ($2 k+1$)-coloring, asymptotically almost surely there are k color classes with size very close to $2^{d} /(2 k)$ and $k+1$ class with size very close to $2^{d} /(2(k+1))$. In both cases, each color class is contained almost exclusively in a single bipartition class of Q_{d}.

The results generalize to the discrete torus with fixed even side length. The approach is through entropy, and extends results obtained by Jeff Kahn (who had considered the case when H is a doubly infinite path). (Received September 08, 2010)

