1064-05-117 Pawel Pralat* (pralat@math.wvu.edu), Department of Mathematics, West Virginia University, Morgantown, WV 26506. Modular orientations of random regular graphs.
Extending an old conjecture of Tutte, Jaeger conjectured in 1988 that for any fixed integer $p \geq 1$, the edges of any $4 p$-edge connected graph can be oriented so that the difference between the outdegree and the indegree of each vertex is divisible by $2 p+1$. It is known that it suffices to prove this conjecture for $(4 p+1)$-regular, $4 p$-edge connected graphs. Here we show that there exists a finite p_{0} so that for every $p>p_{0}$ the assertion of the conjecture holds asymptotically almost surely for random $(4 p+1)$-regular graphs. The proof is based on the spectral properties of these graphs, and applies to (appropriately defined) pseudo-random ($4 p+1$)-regular graphs as well.
(Joint work with Noga Alon.) (Received September 02, 2010)

